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1 Preliminaries

1.1 Kac-Moody and Affine Lie Algebras

Kac-Moody algebras are a class of infinite dimensional Lie algebras that has a similar repre-
sentation theory to that of semi-simple Lie algebras. Namely, admitting s root space decom-
position, an associated (ind) Lie group, a casimir element, Borel-Weil-Bott etc. This can be
done using a generalized Cartan matrix (i.e. dropping the positive definite requirement).

Affine Kac-Moody algebras are a subclass of KM algebras associated to semi-simple Lie
algebras, and are defined as a central extension ĝ (or its polynomial counterpart ĝpol) of the
loop algebra g ((t)) := g⊗ C ((t)) (resp. g[t±1]), with Lie brecket

[X ⊗ f, Y ⊗ g] = [X, Y ]⊗ fg

The polynomial Kac-Moody algebras can be defined as an abstract Kac-Moody algebra
using a Cartan matrix: Start with a semi-simple Lie algebra g with a Cartan matrix A =
(aij)1≤i,j≤n. Add a zero row and column Â = (aij)0≤i,j≤n with a0,0 = 2, a0,j = −αj

(
θ̌
)
, aj,0 =

−θ (α̌j) , j > 0. ĝpol is the Lie algebra associated to Â. By completing with respect to the
t-adic topology, we can get the entire affine Lie algebra ĝ.

A second definition can be given by explicitly describing the central extension. This
allows us to relate representation theory of g to that of ĝ as well as to that of the loop group
LG.

In this talk we’ll use the seconf point of view.

Definition 1. Let g be a semi-simple Lie algebra, and κ an invariant symmetric bilinear
form on g. The affine Lie algebra associated to (g, κ) is the central extension

0 → C1 → ĝκ → g ((t)) → 0

with 1 central and

[X ⊗ f, Y ⊗ g] = [X, Y ]⊗ fg + κ (X, Y ) Rest=0 fdg · 1

Such κ’s are classified byH2 (g,C) and can be shown to be one dimensional. In particular,
fixing κ0 the normalized Killing form with κ0 (α̌, α̌) = 2 for any long root α, any other κ will
be a scalar multiple of κ0. The critical form κc is defined as

κc = −1
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Definition 2. A ĝκ representation is called smooth if it is killed by t−Ng[[t]] for N ≫ 0. Let
ĝκ -mod♡ be the category of smooth ĝκ-modules on which c acts as the identity. Equivalently,
defining

Uκ (ĝ) := U (ĝ) / (1− 1)

this category is the category of modules over the completion Uκ (ĝ) in the t-adic topology.

κ is called the level of the representation. One of the main goals of today’s talk is to
explain the special role of representations of critical level.

2 Finite Dimensional Case

Let G be a semi-simple simply connected Lie algebra, g = LieG, B ⊂ G a Borel subgroup.
G acts on g -mod by V 7→ Ad∗

g V . We want to understand the categories

RepG = g -modG ⊂ g -modB ⊂ g -mod

The first category is the simplest: It is a semi-simple category with simple objects Vλ for
each dominant weight λ. i.e.

RepG ≃
⊕
λ∈P+

Vectλ

We want an analogous decomposition for the other two.

2.1 The center

For a DG-category C, the center Z (C) is by definition endomorphisms of the identity functor.
It is a commutative algebra. For x : T → SpecZ (C), let I ⊂ Z (C) be the corresponding
ideal. Define Cx the full subcategory where the action of Z (C) factors through Z (C) /I.If
C = A -mod, we have an equivalence Z (A -mod)

∼−→ Z (A) given by restriction.
Let A = U (g). Choose a basis Ja; a = 1, . . . , dim g for g and a dual basis Ja with respect

to κ0. The Casimir element

Ω1 =
1

2

∑
a

JaJa

lies in the center. The general form of the center is described via the Harish-Chandra
homomorphism

Z (g)
∼−→ U (h)W ↪→ U (h)

given by restriction of U (g) → U (g) /U (g) · n ≃ U (g)⊗U(b) U (h).

U (h)W is a polynomial algebra C [Ωi] , i = 1, . . . , rank g, with Pi ∈ U (g)di+1, di the i-th
exponent.

Thus SpecZ (g) = SpecZ (g -mod) is a finite dimensional affine space. Under certain
integrability conditions, g -mod will decompose into direct sum of the fibers over different
points of this affine space. This is described in the next section:



2.2 Category O

Let O = g -modN,ss ⊂ g -modN be the subcategory where H acts semi-simply.
Let λ ∈ h∗. We get a map

χ : Z (g)
∼−→ U (h)W → U (h)

λ−→ C

χ is a well defined element of h∗//W . Denote ϖ : h∗ → h∗//W the projection, so χ = ϖ (λ).
Define Oχ ⊂ O the subcategory where the action of the center factors through the formal
neighborhood of the closed point corresponding to χ.

We then have a decomposition

O ≃
⊕

χ∈SpecZ(g)

Oχ

.
The blocks generically have a simple description: For λ−ρ dominant and anti-dominant,

Oϖ(λ) is a direct sum of |W |-categories, each equivalent to Vect and generated by the Verna
module Mw·λ. For λ = −ρ, it is a single copy of Vect generated by Mλ. For dominant
integral λ, we can get nontrivial extensions between Mw·λ and Mw′·λ.

If we add the requirement that h acts with integral eigenvalues, we get the category
g -modB. Thus the latter has a similar decomposition but with λ dominant and integral.
Other blocks can be described as gmodλ,B - B-integrable λ-twisted representations.

2.3 Flag Variety

We can use the geometry of the flag variety G/B to construct elements of O: We have an
action of G on G/B. Taking derivatives, we get a map g → Vect (G/B). Let λ be a regular
dominant weight. We have an extension

0 → OG/B → D≤1,λ (G/B) → Vect (G/B) → 0

and thus a map
U (g)⊗Z(g),ϖ(λ) C := Uϖ(λ) (g) → Dλ (G/B)

from g to twisted differential operators on G/B (defined as the quotient D (G) /D (G) ·
(ξ − λ (ξ) ; ξ ∈ b)).

Theorem 1. (Beilinson-Bernstein Localization) The induces functor

Loc : Uϖ(λ) (g) -mod → Dλ -mod (G/B)

is an equivalence, with an inverse given by global sections Γλ.

We get an induced functor

Dλ -mod (G/B)B → Oϖ(λ)

For a Schubert cell Nw ⊂ G/B, let δ (Nw) := iNw∗ONw. This is an N -invariant Dλ-module,
and so Γλ (G/B, δ (Nw)) ∈ Oϖ(λ). This is a twisted Verma module. This name is justified
by the following:



Proposition 1. For w = w0, Γ (δ (wN)) = Γ (Fun (N−)) ≃ M∨
λ . For w0 = 1, Γ (δ (Nw)) =

Γ (δ1) ≃ Mλ

If we further restrict to Dλ -mod (G/B)G, we get integrable modules: Indeed, if λ is
integral dominant Dλ (G/B) ≃ D (O (λ)). We have ωG/B ∈ D -mod (G/B)G and by Borel-
Weil-Bott:

Γ
(
G/B,O (λ)⊗ ωG/B

)
≃ Γ (G/B,O (−λ)) ≃ Vλ

3 Vacuum and integrable representations

We want to generalize the above to the affine case. That is, a description of the center,
that will give a decomposition of some affine category O. We start by describing the flag
variety. Unlike the finite case, there are several natural choices for a Borel subgroup. Several
unequivalent choices are G (O) , G (C[t−1]) , N (K)T (O) , I, where I is the preimage of B
under the evaluation map G (O) → G. The first will correspond to Weyl / Verma modules,
the second to the corresponding contragradient modules, and the lest to Wakimoto modules.
We’ll focus on the first: In that case the flag variety is GrG = G (O) ⊂ G (K). This is a
maximal parabolic subgroup of Ĝ regarded as an abstract Kac-Moody algebra. We have a
global section functor

ΓIndCoh : Dκ -mod (GrG) → ĝκ -mod

and thus a map
Dκ -mod (GrG)

G(O) → ĝκ -modG(O)

Taking δ1 ∈ Dκ -mod (GrG)
G(O), we get

Vκ := Γκ (Gr, δ1) ∈ ĝκ -modG(O)

This is the vacuum module of level κ. Explicitly:

Vκ ≃ Indĝ
L+g⊕C1C

where L+g acts by zero and 1 acts by the identity. If we replace C with any other Vλ, we
get the Weyl module Vλ

κ.
As for integrable modules: We have Pic (GrG) ≃ ZO (1). If κ = k · κ0 is positive definite

and integral, Dκ = D (O (k)), and:

Theorem 2. (Affine Borel-Weil-Bott)

Vint
k·κ0

:= Γ (GrG,O (k)⊗ ωGrG) ≃ Γ (GrG,O (−k))

is an integrable module concentrated in degree 0, and is isomorphic to the unique maximal
quotient of Vk·κ0.

Remark. In a similar way as above we can construct integrable modules Vλ,int
k·κ0

for any

dominant integral λ satisfying λ
(
θ̂
)
≤ ℓ. We have a fully faithful embedding

ĝκ -modG(K) ↪→ g -modG

sending Vλ,int
k·κ0

to Vλ. In particular, this is a semi-simple category with finitely many simple
objects.



4 The Center

4.1 The Casimir element

We’re interested in the center

Z (ĝκ) := Z (ĝκ -mod) ≃ Z
(
Uκ (ĝ)

)
A first attemp will be to construct the loop of the Casimir element: For an element

X ∈ g, let Xn = X⊗ tn and X (z) =
∑

n∈ZX(n)z
−n−1 (for now z−n−1 is just an index). Then

we would like to define

Ωnaive
1 (z) =

1

2

∑
a

Ja (z) Ja (z)

The problem is that this is not even an element of Uκ (ĝ): Take for example g = sl2, so that
Ω1 =

1
2

(
ef + fe+ 1

2
h2
)
. Then

Ωnaive
1 (z) =

1

2

(
e (z) f (z) + f (z) e (z) +

1

2
h (z)2

)
Take e.g. the first term:

e (z) f (z) =
∑
N

( ∑
n+m=N

enfm

)
z−N−1

but we only allow m → ∞.

4.2 Fields and OPE

The solution for that comes from realizingX (z) as an actual family of operators parametrized
by points on a curve. Then interpret the product as a product of operators. We’ll only allow
operators satisfying a locallity conditions - those are called fields. The coefficients of zn will
then be elements of universal enveloping algebra, and in fact will generate a Lie-subalgebra.

Since we want our operators to vary along a curve, or at least a formal disk, we need
them to be Aut (D)-invariant. Thus we need an element of ĝκ -modG(O). We’ll thus take the
vacuum Vκ, i.e. X (z) ∈ EndVκ ((z)).

Definition 3. A collection of operators F = {X (z) ∈ EndVκ ((z))} is a set of fields if they
satisfy locallity: For X, Y ∈ F , X (z)Y (w) is well defined as an element of EndVκ ((z1)) ((z2)).
We then require that when taking the limit z → w, we get a decomposition

lim
z→w

X (z)Y (w) =: X (w)Y (w) : + [X (z) , Y (w)]

with : X (z)Y (w) : regular in z−w and [X (z) , Y (w)] is a sum of delta functions supported
on the diagonal z − w. That is, it has a Taylor expansion with respect to (z − w)−1.

Given two fields X (z) , Y (z), we define their product to be : X (z)Y (z) : - this is the
normally ordered product, and is again a field. The commutator [X1 (z1) , X

2 (z2)] is the
chiral bracket that will be discussed later.



Theorem 3. (State-Field correspondence) For X(−1) ∈ t−1g ⊂ Vκ, let X (z) = X(−1) (z) =∑
n X(n)z

−n−1. By repeatedly applying normally ordered product, define X (z) for any X ∈
Vκ. Then the collection {X (z) : X ∈ Vκ} is a collection of fields on Vκ

We’ll need the following consequence of locality:

Proposition 2. For any X, Y ∈ Vκ,

[X (z) , Y (w)] =
∑
n≥0

(
X(n) · Y

)
(w) · (z − w)−n−1

The above formula gives a Lie algebra structure on the Fourier coefficients, which is
compatible with the Lie algebra structure on the universal enveloping algebra. In other
words, if we denote by L (Vκ) the completion of the span of all Fourier coefficients, that
is the completion of symbols A[m], A ∈ Vκ,m ∈ Z with respect to the topology defined by
m → ∞, we have a Lie algebra embedding

L (Vκ) → Uκ (ĝ)

Definition 4. zκ (ĝ) := Endĝκ (Vκ) ≃ (Vκ)
L+g

So we have a map Zκ (ĝ) → zκ (ĝ). We’ll start by constructing an element of zκ (ĝ), and
then show it lifts to Zκ (ĝ).

4.3 Segal-Sugawara operator

We can now define the analog for the Casimir element: It will just be the field corresponding
to the usual Casimir element (realized as an element of g⊗ t−1)

Ω1 (z) =
1

2

∑
a

: Ja (z) Ja (z) :

For example, for g = sl2, the first term will be

e (z) f (z) =
∑
N

( ∑
n+m=N,n<0

enfm +
∑

n+m=N,n≥0

fmen

)
z−N−1

Proposition 3. For any Jb, we have[
J b (z) ,Ω1 (z)

]
=

κ− κc

κ0

J b (z2) · (z1 − z2)
−2

In particular, all its Fourier coefficients Ω1,(m) are in the center of End (Vκ) precisely if
κ = κc.

Proof. By 2, we have[
J b (z) ,Ω1 (z)

]
=
∑
n≥0

(
J b
n · Ω1

)
(z1) · (z2 − z1)

−n−1



Since Ω is of degree 2, any term with n > 2 will vanish. We’re left with n = 0, 1, 2.
For n = 2:

J b
2 ·

1

2

∑
a

Ja
−1Ja,−1 =

1

2

∑
a

(
Ja
−1J

b
2 + [J b

2 , J
a
−1]
)
Ja,−1

=
1

2

∑
a

Ja
−1

[
J b
2 , Ja,−1

]
+ [J b

2 , J
a
−1]Ja,−1

=
1

2

∑
a

Ja
−1

[
J b, Ja

]
1
+ [J b, Ja]1Ja,−1

=
1

2

∑
a

κ
(
[J b, Ja], Ja

)
=

1

2

∑
a

κ
(
J b, [Ja, Ja]

)
(4.1)

By choosing an orthogonal basis we can see that the last term equals zero.
For n = 1:

J b
1 ·

1

2

∑
a

Ja
−1Ja,−1 =

1

2

∑
a

(
Ja
−1J

b
1 + [J b, Ja]0 + κ

(
J b, Ja

))
Ja,−1

=
1

2

∑
a

Ja
−1κ

(
J b, Ja

)
+
[
[J b, Ja], Ja

]
−1

+ κ
(
J b, Ja

)
Ja,−1

=
∑
a

κ
(
J b, Ja

)
Ja
−1 +

1

2

∑
a

[
[J b, Ja], Ja

]
−1

(4.2)

The first term is the decomposition of J b by the basis Ja
−1, but multiplied by κ

κ0
. The second

term is exactly the adjoint action of the Casimir element on J b, thus equals 1
2
Kil
κ0

= −κc

κ0
. By

a similar argument we can show the n = 0-th term vanishes, and so overall we have exactly
the expression in the proposition.

Corollary 1. Ω1,(m) ∈ zκc (ĝ) for all m. Furthermore, since Ja
n generates the entire universal

enveloping algebra, we get Ω1,(m) ∈ Zκc (ĝ).

For non-critical level, define Ω̃m = κ0

κ−κc
Ωm. By the above, we see that

[Ω̃1, J
a
n] = −nJa

n

That is - Ω̃1 is the grading operator. In particular we get:

Corollary 2. For non-critical level the center zκ (ĝ) is trivial.

Proof. By induction on the length, one can show that an element is central iff it is killed by
all An, A ∈ Vκ, n ≥ 0. In particular, Ω̃1 will act by zero. But this is the grading operator,
so the central element must be the highest weight vector.

In fact, one can show that the same is true for the entire center: For non-critical level
Zκ (ĝ) is trivial.



Corollary 3. For g = sl2, zκc (ĝ) ≃ C[Ω1,(m)]m≤−2, and Zκc (ĝ) ≃ C[Ω1,(m)]m∈Z.

Proof. (sketch) For m > −2, Ω1,(m) will act by zero on the highest weight vector, thus as an
element of EndVκ it is the zero operator. We’ve already constructed a map C[Ω1,(m)]m≤−2 →
zκc (ĝ). To show it is an isomorphism, one shows it is an isomorphism on the associated
graded. The latter is just the jet space gr zκc (ĝ) ≃ JZ (g) ≃ JC[Ω1] ≃ C[Ω1,(m)]. By the
commutation relation any element Ω1,(m),m ∈ Z will also commute with any Ja

n, and so we
get a map C[Ω1,(m)] → Zκc (ĝ), and again by a similar (but more involved) argument we can
relate the associated graded of the latter with LZ (g), hence this map is an isomorphism.

For a general g, we have Ωn ∈ Z (g) for n = 1, . . . , rk g. One can indeed show that a
similar construction gives the entire center:

Theorem 4. zκc (ĝ) ≃ C[Ωn,(m)]n=1,...,rk g,m≤−2 where Ωn,(m) is the m-th Fourier coefficient
of Ωn (z). The center Zκc (ĝ) is isomorphic to the completed topological algebra generated by
all Fourier coefficients Ωn,m,m ∈ Z.

However, an explicit description of those elements is very difficult, and the proof is rather
indirect. Frenkel-Feigin’s original proof used a ”free field realization” technique - embedding
the vertex algebra Vκc into a vertex algebra associated to a commutative Lie algebra. Next
week we’ll see a shorted, geometric proof.
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